Finite Element Methods

(ME702)

Course Objectives

- 1. To learn basic principles and skills of finite element modeling and analysis.
- 2. To learn the theory and characteristics of finite elements that represent engineering structures.
- 3. To learn and apply finite element solutions to problems in mechanical engineering.
- 4. To develop the knowledge and skills needed to effectively evaluate finite element analyses performed by others.

Course Outcomes:

- **CO1**) To understand the theory of elasticity including strain/displacement and Hooke's law relationships.
- **CO2**) To analyze solid mechanics problems using classical methods and energy methods;
- **CO3**) To solve torsion problems in bars and thin walled members.
- **CO4**) To solve for stresses and deflections of beams under unsymmetrical loading;
- **CO5**) To analyze the maximum and minimum principal stresses using analytical and graphical (mohr's circle)methods.
- **CO6**) To obtain stresses and deflections of beams on elastic foundations;
- **CO7**) To Understand the fundamental concepts of stress and strain and the relationship between both through the strain-stress equations in order to solve problems for simple tridimensional elastic solids Calculate and represent the stress diagrams in bars and simple structures.
- **CO8**) To apply various failure criteria for general stress states at points

Program Educational Objectives:

- **PEO1**: Our graduates will apply their knowledge and skills to succeed in a computer engineering career and/or obtain an advanced degree.
- **PEO2**: Our graduates will apply basic principles and practices of computing grounded in mathematics and science to successfully complete hardware and/or software related engineering projects to meet customer business objectives and/or productively engage in research.

- **PEO3**: Our graduates will function ethically and responsibly and will remain informed and involved as fully in their profession and in our society.
 - **PEO4**: Our graduates will successfully function in multi-disciplinary teams.
 - **PEO5**: Our graduates will communicate effectively both orally and in writing.

Program Outcomes:

- a. Graduates will demonstrate knowledge of mathematics, science and engineering applications
- b. Graduates will demonstrate ability to identify, formulate and solve engineering problems
- c. Graduates will demonstrate an ability to analyse, design, develop and execute the programs efficiently and effectively
- d. Graduates will demonstrate an ability to design a system, software products and components as per requirements and specifications
- e. Graduates will demonstrate an ability to visualize and work on laboratories in multidisciplinary tasks like microprocessors and interfacing, electronic devices and circuits etc.
- f. Graduates will demonstrate working in groups and possess project management skills to develop software projects.
- g. Graduates will demonstrate knowledge of professional and ethical responsibilities
- h. Graduates will be able to communicate effectively in both verbal and written
- i. Graduates will show the understanding of impact of engineering solutions on society and also be aware of contemporary issues like global waste management, global warming technologies etc
- j. Graduates will develop confidence for self education and ability for life long learning.
- k. Graduates can participate and succeed in all competitive examinations and interviews

Mapping of course out comes with program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
outcomes											
CO1	√								√		
CO2			\checkmark				√				
CO3					√						\checkmark
CO4						√					
CO5				1						V	
CO6	V										
CO7								√			
CO8						$\sqrt{}$					
CO9			1								
CO10		$\sqrt{}$							·		